Fracture properties of an acrylic bone cement.

نویسندگان

  • E Bialoblocka-Juszczyk
  • M Baleani
  • L Cristofolini
  • M Viceconti
چکیده

This study investigated experimentally the fracture properties, i.e., the fatigue strength, the resistance to crack propagation and the fracture toughness, of an acrylic bone cement (Cemex RX). The mean endurance limit was determined following the staircase method. The endurance limit was estimated at 9.2 MPa. The fatigue crack propagation rate was measured according to the ASTM E647 standard. The equation of the line fitting the crack growth per cycle (da/dN) versus the stress-intensity factor range (delta K), in a log-log graph, was used to calculate the empirical constants of Paris' law for the selected bone cement: da/dN (m/cycle) = 3.56 x 10(-7) x delta K (MPa x m1/2)5.79. This power-law relationship described well (R2 = 0.96) the growth rate in the stable crack growth region, i.e., in the mid delta K range. The fracture toughness K(IC) of the bone cement was determined according to the ASTM E399 standard. The K(IC) mean value was 1.38 MPa x m1/2. These experimental results provide the set of necessary inputs for numerical studies aimed to investigate the damage accumulation process in the mantle fixing cemented prostheses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement of bone cement using zirconia fibers with and without acrylic coating.

Acrylic (polymethylmethacrylate or PMMA) bone cement was modified by the addition of high-strength zirconia fibers with average lengths of 200 microm and diameters of 15 microm or 30 microm. A novel emulsion polymerization process was developed to encapsulate individual fibers in PMMA. Improvements in tensile and compressive properties as well as in fracture toughness were investigated upon inc...

متن کامل

Validation of the Small Punch Test Technique to Measure the Mechanical Properties of Acrylic Bone Cement

Introduction The main function of acrylic bone cement is to transfer loads from the prosthesis to the cancellous bone or increase the load carrying capacity of the surgical prosthesis. If the imposed stresses are greater than the load carrying capability, then cement fracture may occur resulting in failure of the joint replacement. The fracture of the cement mantle and subsequent premature loos...

متن کامل

Autonomic healing of acrylic bone cement.

Self-healing in orthopedic bone cement is demonstrated with a novel thermoplastic solvent-bonding approach. Low toxicity solvent-filled microcapsules, embedded in a commercial acrylic bone cement matrix, enable recovery of up to 80% of the virgin fracture toughness of the cement at room and body temperature conditions without external stimuli or human intervention.

متن کامل

Critical evaluation of pulse-echo ultrasonic test method for the determination of setting and mechanical properties of acrylic bone cement: influence of mixing technique.

Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of th...

متن کامل

Influence of filler content on static properties of glass-reinforced bone cement.

A commercial acrylic bone cement was modified by the incorporation of different weight fractions of glass spheres. The influence of the filler proportion on the mechanical behavior was assessed. Composite cements were prepared by replacing part of the powder phase of the cement by an equivalent weight of glass particles, which resulted in an increase in the liquid-to-powder (L/P) ratio of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta of bioengineering and biomechanics

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2008